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Abstract--In this paper we investigate the steady, two-dimensional, free convection flow caused by a 
sinusoidally heated and cooled infinite vertical surface that delimits a semi-infinite porous media. An 
analytical solution which is valid for small values of the Rayleigh number, Ra, is obtained using a 
regular perturbation method. A finite-difference technique is used to numerically solve the problem for 
0 <~ Ra <~ 150 and for small values of Ra, the results are in very good agreement with the analytical 
solutions and the streamlines are in the form of a row of counter rotating cells which are situated close to 
the vertical surface. As the Rayleigh number increases, above a value of about 40, then the cellular flow 
separates from the plate. At very large values of Ra, a scaling analysis has been performed and the results 
suggest that the vertical velocity and the local Nusselt number on the plate support better the boundary- 
layer scalings, than does the mean vertical velocity and the mean Nusselt number along the plate. In the 
situation in which the flow separates, i.e. for Ra >~ 40, the smallest possible solution domain must be 
chosen, by using the symmetry of the problem, otherwise it has not been possible to obtain a convergent 

numerical solution. Copyright © 1996 Elsevier Science Ltd. 

1. INTRODUCTION 

Convective heat transfer in porous media is a topic 
of rapidly growing interest due to the wide range of 
geophysical and engineering applications, such as 
storage of radioactive nuclear waste materials, the 
exploration of petroleum and gas fields, the design 
of underground energy storage systems, insulation of 
buildings and equipment, engineering aspects of irri- 
gation systems, etc. Many studies, with application to 
the above research areas, are gathered in a com- 
prehensive review of convective heat transfer mech- 
anisms through porous media in the book by Nield 
and Bejan [1]. 

Much attention has, in the past, been given to the 
free convection from a semi-infinite fiat plate which is 
embedded in a porous media, whose temperature var- 
ies as some power of the distance from the leading edge 
of the plate. Similarity solutions have been extensively 
employed to solve the steady boundary-layer equa- 

f On leave from Faculty of Mathematics, The University 
of Cluj, R-3400 Cluj, CP 253, Romania. 

tions for such wall temperature distributions, see for 
example Cheng and Minkowycz [2] and Ingham and 
Brown [3]. Transient boundary-layer flows due to a 
heated or cooled vertical fiat plate have also been 
investigated in many studies. Ingham et al. [4] con- 
sidered the situation in which the impermeable 
surface, initially at constant temperature, is suddenly 
cooled to the same temperature as the ambient fluid. 
Similarly solutions for small and large values of time 
were matched by using a numerical technique and 
they found that there is an infinite number of possible 
solutions, each with algebraic decay. The case when 
there is an impulsive increase in the wall temperature 
was analysed by Cheng and Pop [5]. The governing 
equations for the growth of the boundary-layer thick- 
ness were obtained using the Karman-Pohlhausen 
integral method and the solution obtained exactly, 
using the method of characteristics and approximately 
using the method of integral relations. 

The purpose of this paper is to investigate a rela- 
tively unknown class of steady, free convection flows, 
namely the flows caused by the heating and the cooling 
of an infinite fiat plate which is embedded in a porous 
media. Poulikakos and Bejan [6] considered the con- 
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NOMENCLATURE 

constant, equation (26) x, y 
non-dimensional distance from the 
plate 
solution domain 
acceleration due to gravity 
the grid system in the domain D. 
the grid system in the domain D, 
permeability of  the porous media ~. 
a characteristic length /3 
number of  nodal points in the x v 
direction 
number of  nodal points in the ), ~b 
direction ~: 
Nusselt number, = - (~7~!?v) .... ~ (,~ 
number of  nodal points in the : 
direction 
Rayleigh number, = Kg[JT,,L/v~ 
non-dimensional temperature, 
= ( T -  T~)/T, 
amplitude of  the plate temperature 
oscillations 
non-dimensional velocity components 
along x and y directions, = fi/U~ and ~/Uo 
respectively 
a characteristic velocity, 
= K g l ~ / v  

non-dimensional Cartesian 
coordinates along and normal to the 
plate, = 2/L and f,/L, respectively 
transformed coordinate, equation 
(26). 

Greek symbols 
thermal diffusivity 
coefficient of  thermal expansion 
kinematic viscosity of  the convective 
fluid 
non-dimensional streamfunction 
convergence parameter 
relaxation factor. 

Superscrips 
A dimensional variables 

average quantities 
boundary-layer variables 

~ order of  iterations. 

Subscripts 
i, j nodal points 
m the maximum absolute value along the 

plate 
:c condition at infinity. 

figuration of  a horizontal infinite flat plate having 
either a cosine or a step function form of  temperature 
variation. In order to obtain a numerical solution the 
fixed temperature boundary condition at infinity was 
enforced at a very large distance from the plate, which 
depends on the value of  the Rayleigh number, Ra. 
Numerical solutions were obtained using a finite- 
difference scheme and a scale analysis was performed 
to show that a row of counter rotating cells develops 
near the horizontal surface, which penetrates further 
into the porous media as the value of  Ra increases. 
More recently, Bradean et al. [7] considered the same 
problem as Poulikakos and Bejan [6], when there is a 
cosine temperature variation along the horizontal 
plate, and showed that a fixed temperature boundary 
condition cannot be enforced at infinity since the tem- 
perature there is constant, but depends on the Ray- 
leigh number. The appropriate boundary condition 
was found to be that of  no heat transfer at an infinite 
distance from the plate. Analytical solutions for small 
values of  the Rayleigh number and finite-difference 
results proved that this problem is one of  infinite pen- 
etration and not finite as considered by Poulikakos 
and Bejan [6]. In a manner which is similar to the 
vertical situation, Poulikakos and Bejan [8] described 
the free convection flow in a porous media enclosed 
by a rectangular domain, due to a heated and cooled 
vertical side. The temperature distribution on the ver- 

tical differentially heated wall is assumed to be of the 
step function form, whereas the other three bound- 
aries are insulated. A scale analysis and a finite-differ- 
ence method were employed in two situations, namely 
when the side heating effect is positioned above and 
below the side cooling effect, and they showed, in 
each case, that the natural circulation consists of  two 
counter rotating cells situated one above the other. 

In this paper we analyse the free convection from 
an infinite vertical wall which is embedded in a porous 
media and having a sine temperature variation. 

For  small values of  the Rayleigh number we present 
approximate analytical solutions for the governing 
equations using a series expansion method in terms of  
Ra and numerical solutions are obtained in the range 
0 ~ Ra ~< 150, using a finite-difference scheme. In this 
situation it is possible to have a constant temperature 
boundary condition at infinity and, in order to solve 
the problem numerically, this is enforced exactly at 
infinity using a scaling in the direction normal to the 
plate, as proposed by Zeldin and Schmidt [9]. The 
analytical and numerical results for the streamlines 
and isothem patterns, the mean fluid velocity along 
the plate and the mean Nusselt number are in very 
good agreement for small values of  the Rayleigh 
number. The fluid separation from the plate and the 
development of  a recirculation region as Ra increases 
above a value of  about  40 is briefly analysed using 
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two variables, namely the vertical velocity and the 
horizontal temperature gradient along the plate. 
When Ra is very large, both the mean and the local 
flow characteristics are calculated from the numerical 
solution. The necessity of choosing the smallest solu- 
tion domain possible due to the symmetry of the prob- 
lem is discussed in order to obtain a convergent 
numerical solution. 

2. GOVERNING EQUATIONS 

In this paper we consider the two-dimensional 
steady, free convection fluid flow due to a heated and 
cooled vertical infinite flat plate which is embedded in 
a saturated porous media which is maintained at a 
constant temperature T~. We choose the 2 and 3~ 
coordinates along and normal to the plate, respec- 
tively, and the temperature to have a sinusoidal dis- 
tribution along the plate of the form 

f =  T~ sin ( 2 / L ) + T ~ ,  (1) 

where Ta and 2nL are the amplitude and the period 
of the wall temperature variations, respectively. If we 
assume that, (i) the convective fluid and the porous 
media are in local thermal equilibrium, (ii) the proper- 
ties of the fluid and the porous media are constant, 
(iii) the Boussinesq approximation is valid and (iv) 
Darcy's law is applicable, the governing equations can 
be written in the form [3] 

02(~ 02¢ Kgfl OT 
+ (2) 

022 0¢ 2 v 0~ 

02f  02f  1 / 'O~0f  0~ T ~  
(3) 

where f is the temperature, ~ is the streamfunction 
which is defined in the usual way, namely fi = o&/a; 
and ~ = - 0 ~ / 0 2 ,  and fi and 0 are the fluid velocities 
in the 2 and 3) directions, respectively; g is the accel- 
eration due to gravity which is positive in the negative 
2 direction; v, fl, K and ~ are the kinematic viscosity, 
the thermal expansion coefficient of the fluid, the per- 
meability and the thermal diffusivity of the porous 
media, respectively. 

We now define the dimensionless variables as fol- 
lows 

x = S/L  y = y /L  u = ~/U~ v = O/U~ (4) 

T = (T--  T~) /T .  t~ = 6/(U~L), (5) 

where U¢ = KgflT~/v is a characteristic velocity. In 
terms of the new variables, equations (2) and (3) 
become 

02~ 02~k OT 
+ - (6) 

t~x 2 Oy 2 Oy 

02T O2T aT  0~ 
~x 2 + - -  = Ra (7) 0y 2 6qX OX ~y ' 

where Ra = Kgf lTaL/w is the Rayleigh number. Since 
the problem is periodic in the x direction we need only 
solve equations (6) and (7) in the domain 

D - = { ( x , y ) e E z : o < . x < . 2 r c  0 ~ < y < ~ }  (8) 

subject to the following boundary conditions 

T(x,O)= sin(x) O(x,0)=0 0~<x~<~ (9a) 

T(0,y) = T(2n,y) ~k(0,y) = ~(27t,y) 0 ~< y < 

(9b) 

T(x,y) ~ O tp(x,y) ~ O a s y - * ~  0~<x~<n. 

(9c) 

Due to the reasons outlined in Section 5, it is more 
convenient to look for a solution for which ~ = 0 and 
T = 0 at x = kn, k integer. Then it can be easily proved 
that the temperature and the streamfunction are anti- 
symmetric functions about the plane x = ~, i.e. 
T(x,y) -- - T(2rt--x,y) and O(x,y) = - ~k(2~-x,y) 
where 0 ~< x ~< rr and 0 ~< y < oo, and the problem 
reduces to solving equations (6) and (7) in the domain 

Do = {(x,y)~E2:O<<.x<~ zr O<~ y <  oo} 

subject to the following boundary conditions: 

T ( x , O ) = s i n ( x )  O ( x , 0 ) = 0  0~<x~< 

T(x , y )  = O O(x ,y )  = O x = O , n  

T(x,y) ~ O tp(x,y) ~ O a s y ~  

(10) 

(1 la) 

0 ~ < y < ~  

(1 lb) 

0 ~ < x ~ m  

( l lc )  

3. ANALYTICAL SOLUTION 

3.1. Small Rayleigh number 
We look for a solution of equations (6) and (7), 

subject to the boundary conditions (9), which is valid 
for small values of Ra in the form 

~b = ~o + R a ~ ,  + (Ra2)~2 +0(Ra  3) (12a) 

T =  To+RaT~ +(Ra:)Tz+O(Ra3) ,  (12b) 

where ~'0, ~k~, qJ2 and To, T~, T2 are independent of the 
Rayleigh number. On substituting these expressions 
into the governing equations (6) and (7) and equating 
the same powers of the Rayleigh number we obtain 
the following partial differential equations: 

02To 02 To 
Ox~ Z- + --Oy 2 = 0 (13a) 

02~9o 02~o OTo 
+ 03b)  

Ox 2 ay 2 Oy 
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02Tt q_ 02T, 000 6qT0 000 0To 
~x 2 ~3,2 ~y c~x c~x c3y 

02~1 0201 aT, 
+ 

ax e a.~,: Oy 
(13d) 

02T, ~'2T2 O0o ~T] 00o OTI 
- _ }_  

Ox 2 83, 2 ~y ~x ~'x &' 

';OI eTo OOl [~T 0 + 
?,v Ox Ox ~?y 

m 

along the plate a and the mean Nusselt number Nu 
(13c) are obtained in the form 

J '~ 5 
a = u(x,0) dx = 1 -- 8 ~ R a 2  + 0 ( R a  3) 

0 

(16a) 

;~(  25 2 3, 
Nu = , -c~T/c'})'),=,,dx = 2 +  l ~ R a  +O(Ra ). 

(13e) 
(16b) 

~2O2 32 
+ ~_ ~_2 0T2 (13f) 

?x -~ v.v- 0_~' 

The problem reduces to solving, in turn, equations 
(13), subject to the boundary conditions 

00(x,0) = 0 To(x,O)=sin(x) 0 <<. x <. re 

(14a) 

k = l , 2  . . . .  0~<x~<re 

(14b) 

OAx,O) = o r~(x,O) = o 

0k(0,)') =0k(2~ ,y )  Tk(O,y) = L(2~,y)  

k = 0,1 . . . .  0 ~ y < o c  (14c) 

Ok(x,y)--*O rk(x,y)--*O k = 0,1 . . . .  

y--+0 0 ~ x ~  (14d) 

and we obtain 

T,, = e 'sin(x) (15a) 

1 
00 = 3 ve 'sin(x) (15b) 

1 
T, = - i ~ v e  2"sin(2x) (15c) 

(15d) 
1 / 1  \ 

Ot = 6 4 ~ Y - Y 2 ) e  -' sin(2x) 

~ 3  , 1 +),+y2)e_3,]sin(x ) 
T2 : L 2 0 ~ e -  256 (38 

+ ~ , i ( T ~ y + y ' ) e  3.'sin(3x) (15e) 

i1 02 = ( - 7 + 3 y ) e  

1 7 1 3y2) e 3~.1 + 2~g(~ +l f l y +  s i n ( x )  

1 / / 5  1 2 1 .~ sv 
7 ~ ) , + ~ ) ,  - ~ y - ) e  ~-sin(3x). (15f) 

It is important  to note that  the boundary conditions 
(11) are satisfied, although the solution has been 
obtained using the boundary conditions (9). F rom this 
solution, analytical expressions for the mean velocity 

3.2. Large Rayleigh number 
At large values of the Rayleigh number, Ra, a ther- 

mal boundary- layer  is formed adjacent to the heated 
vertical plate. The boundary- layer  equations are 
obtained by neglecting the second derivatives of 0 
and T with respect to x in comparison to the second 
derivatives of 0 and T with respect to y in equations 
(6) and (7) [3], i.e. 

~:O ~T 
- ( 1 7 )  (~y2 ~y 

02T= Ra . (18) 
0), 2 . Ox Ox 

It is now convenient to introduce scaled variables as 
follows: 

O= Raq~ T =  Ra'T y =  Rary (19) 

where q, t and r are constants to be determined. Then 
equations (17) and (18) become 

02~ 0"t 
Ra q 2r = Ra ' - r  (20) 

092 0"7 

Rat-2rO2To~2 ~ eal+q+t r(~l 0x ~1~,0x 

(21) 

and the temperature boundary condit ion on the plate 
is 

Ra'/~ = sin(x). (22) 

In order to maintain the balance between terms in the 
boundary-layer  equations, the exponents of Ra in the 
terms of equations (20) and (21) must be equal and 
the boundary- layer  scalings are found to be 

O =  Ra'/2~ T =  T y =  Ra'/29. (23) 

4. NUMERICAL SOLUTION 

Since the solution domain extends to infinity in the 
y direction, we divide the domain D into two regions, 
namely, 
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D. = { ( x , y ) e E  2:0 ~< x ~< 2n 

Db = { ( x , y ) e E  2:0 ~< x ~< 2re 

O<-Ny<~d} 

(24) 

D ~ < y <  oo}, 

(25) 

where d is a positive constant  to be specified and 
D = D,,wDb. Then the infinite domain  Db is trans- 
formed into a finite domain  by using the scaling in 
the y direction proposed by Zeldin and Schmidt [9], 
namely, 

1 
z = 1 1 + c ( y -  d)' (26) 

where c is a parameter  to be determined. Therefore, 
the domain  Db in the (x,y) plane is mapped into the 
domain 

D~ = {(x,z)eE2:O<<.x<<2rc O<~z<~ l} (27) 

in the (x,z) plane and the t ransformed equations (6) 
and (7) in the domain  D¢ are obtained in the form 

+C2( 1 __Z)4 6321// +2C2(1 _2)3 63~1 07" 
&x - ~  Oz - ~  ~z = c (1 -z )  2 Oz 

t32T 2 4 ~2T_2c2(1  _z)3 0T 
+ c  ( l - z )  Oz 2 0-z 

(28) 

dO OT &~b OT) 
= R a c ( 1 - z )  2 ~ z  3x O x ~ z  " (29) 

Hence, the problem reduces to solving equations (6) 
and (7) in the domain  D a and equations (28) and (29) 
in the domain  D, subject to the following boundary  
conditions 

T(x,y) = sin(x) ~b(x,y) = O y = O O <~ x <~ 2~z 

(30a) 

T(0,y) = T(2~z,y) O(0,y) = O(2rc,y) 0 ~ y ~< d 

(30b) 

and 

T(O,z) = T(2n,z) @(O,z) = @(2~z,z) 0 ~< z ~< 1 

(30c) 

T(x,z) = O ~(x,z)  = O z =  1 O <<. x ~ 2n. 

(30d) 

Similarly, numerical solutions of  the governing equa- 
tions (6) and (7) are obtained in the domain  Do subject 
to the boundary  condit ions (11). In this situation, 
equations (6) and (7) are solved in the domain  

Do~= { ( x , y )~E2:O<~x<.  rt O<~ y<<.d} 

(31) 

and equations (28) and (29) in the domain  

Do~= { ( x , z ) e E 2 : O < . x < ~ n  O<~z<~ 1} (32) 

subject to the following boundary  condit ions 

T(x,y) = sin(x) ~(x ,y)  = O y = O O <~ x <~ 2 

T(x,y) = O O(x,y) = O x = O,rc 

and 

(33a) 

O<.y<~d  

(33b) 

T ( x , z ) = O  0 ( x , z ) = 0  x = 0 , g  0 ~ z ~ < l  

(33c) 

T ( x , z ) = O  O ( x , z ) = 0  z = l  0~<x~<2 .  

(33d) 

The numerical solution of the equations (6), (7), 
(28) and (29), subject to the boundary  conditions 
(30), is obtained by using a finite-difference method. 
The discretization in the domain  D. consists of a 
rectangular grid Gy containing rn + 1 points 
{x~---0,x2 . . . . .  Xm,Xm+l = n} in the x direction and 
n +  1 points {Yl = 0,y2,.-.  ,Y.,Y.+I = d} in the y direc- 
tion. In the domain Dc we take a grid Gz of  m + 1 
points {Xl = 0,x2 . . . . .  x,.,x.,+ 1 = n} in the x direction 
and p + l  points {z.+l = 0,z.+2 . . . . .  z.+j,,Z.+p+l = 1} 
in the z direction. Consider  now two points of  the grid 
G. located in the domain  Dc at (x~, 0) and (x~, z.+2), 
i e  {1,2 . . . .  ,m+  1}. These points are t ransformed in 
the domain Db into (xg, d) and (xi, Y.+2). The link 
between grids Gy and G~ is made by choosing the 
parameter  c such that  

d 
Y.+2 - d  = - ,  (34) 

n 

where din is the step size in the y direction in grid Gy 
and using t ransformation (26) we obtain 

n 
c d ( p -  l) (35) 

The finite-difference approximat ion of  the part ial  
differential equations (6), (7), (28) and (29) has been 
implemented by using the central-difference method.  
The discretization of  the governing equations and the 
boundary conditions leads to a system of non-linear 
algebraic equations, which are solved using the suc- 
cessive over relaxation iterative method. The 
maximum difference between two successive iterations 
of  the streamfunction and temperature is defined by 

A~p o) = max~bb!s~ -- ,/W:- 1)1 t . . . .  j ~-,,s , : / = 1 , 2  . . . . .  m + l  

j = 1,2 . . . . .  n + p  + 1 } (36a) 

A T (s) = max { I T!'~ -- T!'= 1) I --,,s --,J , : i =  1,2 . . . .  m + l  

j = 1,2 . . . . .  n + p +  1}, (36b) 

where the notat ion ()is means the value of  the function 
at  the grid point  (x~, yj) or (xi, zj) and the subscript s 
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denotes  the order of the iteration. The iterative pro- 
cedure is terminated when A~, ~ and AT ~" are bo th  
smaller than some prescribed small value ~:, say 
~ : = 1 0  ~ 

Third-order  approximate  formulae lbr  the vertical 
fluid velocity u = ?~/?y and the horizontal  tem- 
perature gradient  ?T/~y at the mesh points on the 
boundary  y = 0, are obtained using Taylor 's  expan- 
sion and  equat ions (6) and (7) evaluated at r =  0. 
Then the mean  velocity along the plate and the mean 
Nusselt  number  are calculated from the numerical  
solution for the s t reamfunct ion and the temperature  
using Simpson 's  formula.  

5. RESULTS AND DISCUSSION 

Numerical  results of  equat ions (6) and (7) in the 
domain  D subject to the boundary  condi t ions  (9) have 
been obta ined  using the central-difference method  in 
the range of  values of the Rayleigh number  
0 <<, Ra <<, 30. The rate of  convergence of  the iterative 
method  was found to be reasonably rapid and  a relax- 
at ion factor of  ~,) = 1.95 can be used for Ra = 0.25, 
whereas a value of  c,J = 1.8 is required for Ra = 30. 
In all the cases considered, the max imum difference 
between two successive i terat ions in the values of ~p 
and 7", namely At# and  AT, respectively, becomes less 
than c = 10 s in less than  5000 iterations. In order  to 
check the independency of  the numerical  solution on 
the mesh size, the mean  velocity along the plate and 
the mean  Nusseh  number  were calculated for two 
different grid systems, namely when there are 80-80- 
30 and  160 160-60 mesh points in the x, y and : 
directions, respectively. It was found that  the values 
of  a and Nu calculated using these grid systems agree 
within 0.01% for Ra = 0.25 and 1% for Ra = 25. 
Numerical  solutions were calculated for different 
values o f d a n d  we found that  for d />  2~ the numerical  
solution obta ined is a lmost  independent  of  d. Conse- 
quently, all the numerical  results presented in this 
paper  are for the 160 16(~60 grid system with d = 2=. 

For  very small values of  the Rayleigh number  the 
analytical  solution, which was obta ined in Section 3, is 
used to check the accuracy of  the numerical  solution. 
Table 1, which presents the values of  the mean  velocity 
along the plate and the mean  Nusselt  n u m b e r  cal- 
culated analytically and numerically for Ra = 0.25, 1, 
5 and 10, shows that  for very small values of  Ra, 
e.g. Ra = 0.25, there is very good agreement,  within 
0.02%, between the analytical and  numerical  solu- 
tions. As the Rayleigh n u m b e r  increases, the ana- 
lytical solution, which is accurate to O(Ra3), becomes 
less accurate and, therefore, the analytical and 
numerical  results become less consistent.  However,  
they agree within 1% up to Ra = 10 and this is because 
the coefficients of  the powers of  Ra in the analytical  
solution decrease rapidly as the power of  Ra increases. 

Numerical  solutions in the domain  D have been 
obta ined using the boundary  condi t ions  (9), but  since 
the solutions also satisfy the boundary  condi t ions 

Table 1. The mean velocity and the mean Nusselt number 
calculated analytically (A) and numerically (N) as a function 

of the Rayleigh number 

Ra Ft Nu 

(I.25 .4 1.0000 2.0001 
:V 1.0000 1.9999 

I A 0.9999 2.0018 
N 1.0000 2.0016 

5 ,4 0.9985 2.0452 
N 0.9986 2.0444 

10 .,t 0.9940 2.1808 
N 0.9951 2.1678 

(11). i.e. ~ 0  and T ~ 0  tit . \ = 0 ,  = and 2=, and 
~#(.v. y) ~- - ~ ( 2 n - x ,  y) and T(x, y) ~ - T(2n - .v ,  y) 
for any (x, . l ' )e  Do, the results are only presented in 
the domain  Do. Figure 1 shows the evolut ion of the 
streamline and  isotherm pat terns  for Ra = 0.25 and 
25 as obta ined from the numerical  solution. It is seen 
in Fig. 1 a tha t  for small values of the Rayleigh n u m b e r  
the hot temperature  along the plate (0 ~< x ~< ~) gen- 
erates an upward stream of  fluid which meets the 
downward  flowing stream formed along the cold part  
of the plate (~ ~ x ~< 2~). This results in a horizontal  
s t ream being formed along the plane x = ~ which 
must turn a round  to fill the vacuum created near the 
points x = 0 and x = 2~ on the plate. Therefore a row 
of" counter  ro ta t ing cells develop along the plate. As 
the Rayleigh number  increases, each cell makes  con- 
tact with the vertical plate via the slender boundary-  
layer regions. The ability of  the two adjacent  cells to 
t ransfer  heat into and out  of  the porous media and  
between them increases with increasing values of  the 
Rayleigh number ,  see Fig. l c, d. The vertical fluid 
velocity u ((?~,'[?y)~ , and the hor izontal  tem- 
perature  gradient  (~T/?y),  , on the plate are plotted 
as a function of  the distance along the plate in Fig. 
2a, b, respectively, for Ra = 0.25, 10 and 25. As the 
Rayleigh number  increases, the velocity near  the 
location x =  7r on the plate decreases while the 
maximum velocity on the plate increases. Therefore,  
near the location x = 7r on the plate, a region where 
the velocity is very small is formed as the Rayleigh 
number  increases, despite the fact that  s t ronger  stre- 
ams are coming towards this point  on the plate. This 
result is not  surprising, since the only force acting in 
the present problem, namely, the buoyancy force, is 
p ropor t iona l  to the hor izontal  tempera ture  gradient.  
In the ne ighbourhood  of  the location x = ~ on the 
plate in the domain  Do, the hor izonta l  tempera ture  
gradient  which is negative for Ra = 0.25 becomes 
positive for Ra = 25, see Fig. 2b. Therefore,  as the 
value of  Ra increases, the upward  flowing stream, 
formed along the hot  par t  of  the plate, is deflected 
near the location x = = on the plate by the buoyancy 
force which acts downwards.  
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Fig. 1. Streamlines (a), (b), and isotherms (c), (d), in the domain D0o for Ra = 0.25 and 25, respectively. 
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Fig. 2. The vertical velocity (a) and the horizontal temperature gradient (b) as a function of the distance 

along the plate ...... Ra = 0.25, Ra = 10 and Ra = 25. 

We now consider situations of Rayleigh number in 
the range 30 < Ra ~< 150. However, when Ra > 40 
the iterative procedure does not converge with the 
maximum difference between two successive iterations 
of ~ and T, namely A~ and AT, respectively, being 
never less than 0(10 3) but oscillatory in nature. 
Numerical calculations were also performed using the 
first-order upwinding method, but we found the same 
oscillatory behaviour in the iterative procedure. We 
know from experience that, when dealing with strong 
convection problems, many methods give artificial 
oscillations in some regions of the solution domain, 
see for example Leonard [10]. However, these oscil- 
lations usually occur in central-difference and second- 
and third-order upwinding (QUICK) schemes rather 

than in first-order schemes. Leonard [10] eliminated 
artificial oscillations from the problem by developing 
the QUICK method, which is a third-order accurate 
scheme based on a quadratic upstream interpolation. 
The resulting method was found by using an 
exponential upstream interpolation, instead of quad- 
ratic, and is known as the SHARP scheme. Both the 
QUICK and the SHARP methods have been 
employed on this problem but we were still unable to 
obtain convergent results. 

We found that the only way to numerically solve 
the problem for Ra > 40 is to look for solutions for 
which ~ = 0 and T =  0 on x = kn, k integer, con- 
ditions which were satisfied for Ra <40, and reduce 
the solution domain from D to Do. Therefore, numeri- 
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80-160-60 points being used in the x, y and z directions, respectively. 

cai solutions for 30 < Ra ~< 150 are obtained solving 
equations (6) and (7) in the domain Do, subject to the 
boundary  conditions (11). However, the accuracy of 
the numerical method is affected as the Rayleigh num- 
ber increases, and the values of a and Nu calculated 
using the 40-80-30 and 80-160-60 grid systems which 
agree within 1% for Ra = 25, agree only within 4% 
for Ra = 150. The vertical velocity and the horizontal 
temperature gradient on the plate are plotted as a 
function of the distance along the plate in Fig. 3a, b, 
respectively, for Ra = 150 using three grid systems of 
2{)-4(I-15, 40-80-30 and 80-160-60 point  in the x, y 
and z directions, respectively. The value of Ra = 150 
is the largest Rayleigh number  investigated in this 

paper and, therefore, the results presented in Fig. 3 
illustrate the largest errors involved. It can be seen 
that, as the mesh size decreases, the solutions appear 
to be tending to a limit, and all the numerical results 
presented in this paper are for the grid system of 80- 
160-60 points in the x, y and z directions, respectively. 

The streamlines and isotherms are presented in Figs 
4 and 5, respectively, for Ra = 50, 100 and 150 and 
the vertical velocity and the horizontal temperature 
gradient on the plate are plotted as a function of the 
distance along the plate in Fig. 6a, b, respectively, for 
Ra = 25, 50, 75, 100, 125 and 150. We observe that a 
recirculation develops near x = n on the plate, as the 
Rayleigh number  increases above a value of about  40. 
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CcD 

This is because the temperature gradient on the plate 
is positive in the neighbourhood of  the location x = n, 
and negative elsewhere. Actually, the temperature 
gradient on the plate becomes positive in the neigh- 
bourhood of  the point x = n above a value of  about 
Ra = 10, see Fig. 2b. Since the buoyancy force is pro- 
portional to the temperature gradient, then near the 
point x = n on the plate this force acts downwards 
whilst elsewhere near the plate acts upwards. The 
buoyancy force acting upwards is stronger than the 
force acting downwards. For  10 < Ra <~ 40, the effect 
of  the buoyancy force in the neighbourhood of x = n 
on the plate is to slow down the stream coming 

upwards near the point x = n. However, for 
40 < Ra < 150 the buoyancy force becomes 
sufficiently strong so as to pull the fluid downwards 
near the location x = n on the plate and to make the 
main stream flowing upwards along the plate separate 
before it reaches the location x = n. This results in a 
bicellular flow in the domain Do, i.e. a main cell rot- 
ating clockwise and a smaller cell which is situated 
near the point x = n on the plate which is rotating 
counterclockwise. For  100 < Ra ~ 150 the horizontal 
temperature gradient on the plate becomes negative 
again very close to the location x = n and its absolute 
value increases with increasing Ra,  see Fig. 6b. The 



Free convection fluid flow 2555 

3 

x 

i 
0 1 2 3 4 5 6 

Y 

(a) 

X 3.J ) ~ ~  O'lO 

0 I 2 3 4 $ 6 

Y 

(b) 

x 3.0 

0.0 t ,0 2.0 "3.0 4.0 5.0 6.0 

Y 
Fig. 5. Isotherms in the domain Do, for Ra = 50, 100 and 150. 

Co) 

buoyancy force now acts upwards on the fluid situated 
very close to the location x = lr on the plate and this 
makes the recirculation already developed to rotate in 
a larger region from the plate as the Rayleigh number 
increases, see Fig. 4, while the velocity on the plate 
decreases in the neighbourhood of  the location x = ~, 
see Fig. 6a. When the Rayleigh number was increased 
above a value of  about  Ra = 150 we were unable to 
obtain a convergent numerical solution, Therefore, 
above a value of  about  Ra = 150 it is postulated that 
the recirculation region detaches from the vicinity of  
the plate and the steady state model is no longer 

appropriate, i.e. the unsteady problem should be con- 
sidered. 

At  large values of  the Rayleigh number, the bound- 
ary-layer scalings suggest that the velocity and the 
horizontal temperature gradient along the plate 
should be scaled as 

~7 ~ cqT 
- Ra -~/2 y = O  O < ~ x ~  (37a) ~y ~y 

y = 0  0 ~<x~<Tz, (37b) 
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where  ~ denotes  the boundary-layer__approximation.  

The  values o f  ~7 = 2, N u  and 37u = N u / R a  1'2 as cal- 

culated f r o m  the numer ica l  solut ion are presented  in 

Table  2 for  R a  = 50, 75, 100, 125 and  150. These  

results show tha t  as the Rayleigh n u m b e r  increases,  

the heat  t ransfe r  processes  intensifies nea r  the plate, 

Table 2. Some mean boundary-layer flow characteristics as 
a function of the Rayleigh number 

Ra a = a N~ IVu 

50 0.9676 3.0939 0.5521 
75 0.9618 4.9452 0,5710 

100 0.9613 5.9059 0.5906 
125 0.9652 6.7822 0.6066 
150 0.9718 7.5305 0.6149 

Table 3. Some local boundary-layer flow characteristics as a 
function of the Rayleigh number 

Ra u~ = Um Num Num 

50 0.6102 3.3960 0.4803 
75 0.6296 4.2569 0.4915 

100 0.6412 4.9842 0.4984 
125 0.6487 5.6238 0.5030 
150 0.6537 6.2001 0.5062 
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whereas the mean velocity along the plate almost 
approaches a constant value. The values of  a and )Vu 
from Table 2 also indicate that the scaling laws are 
satisfied by the numerical calculations. 

Since the boundary-layer formed adjacent to the 
vertical plates separates from the plate between 
x = n/2 and x = n, the boundary-layer approxi- 
mations are no longer valid in the neighbourhood of  
the location x = n on the plate. Therefore, it is 
expected that the maximum value of  the vertical 
velocity, Um, and the local Nusselt number 
[Nu = - (~T /~y )y= 0], Nu,,, along the plate support 
better the boundary-layer scalings and this is illus- 
trated in Table 3 which contains the values of  am = Um, 
Num and/Wu m = Num/Ra ~/2 for Ra = 50, 75, 100, 125 
and 150. It is also observed that when Ra > 50 the 
locations where the vertical velocity and the hori- 
zontal temperature gradient along the plate have their 
maximum value does not  depend on the value of  the 
Rayleigh number. 

6. CONCLUSIONS 

In this study we have analysed the steady, free con- 
vection fluid flow through a semi-infinite porous 
media due to a heated and cooled vertical surface. 
For  small values of  Ra we showed analytically and 
numerically that near the periodically heated and 
cooled wall, the flow consists of  a row of  counter 
rotating cells which penetrates further into the porous 
media as the Rayleigh number increases. When the 
Rayleigh number is sufficiently large (Ra > 40), the 
flow separates and two recirculating flow regions 
develop near a region of  the wall where two streams 
formed along successive hot  and cold regions of  the 
wall meet. As the Rayleigh number increases, each 
main cell (i.e. not  a recirculating cell) makes contact  
with the vertical plate via slender boundary-layer 
regions, and the ability of  two adjacent cells to transfer 
heat into and out of  the porous media and between 
them increases. The recirculating regions near the 
plate show a tendency to detach from the plate as 

Ra increases above a value of  about  100. When the 
Rayleigh number  is very large, the boundary-layer 
scalings for the vertical velocity and the local Nusselt 
number on the plate calculated in the region where 
the boundary-layer approximations are valid, are con- 
firmed by the numerical solution. However,  for 
Ra > 40, the flow is probably unstable in the region 
where the separation occurs due to the development 
of  two adjacent, counter rotating recirculations, and 
when the governing equations are solved in a domain 
which includes these two adjacent recirculating 
regions we are unable to obtain a convergent numeri- 
cal solution. 
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